Bifunctional Synergy in CO Hydrogenation to Methanol with Supported Cu
نویسندگان
چکیده
منابع مشابه
Low temperature methanol synthesis from CO hydrogenation over Cu-based catalyst
A b as well as methanol selectivity (~90%) were achieved with a mass space velocity of 2700 L/h.kg-cat. at 433 K and 5.0 MPa via ethyl formate in slurry phase. This study investigated the influences of co-precipitation PH value of copper magnesium catalyst, types of alkali compounds as carbonylation promoters and impregnation agents, alcohol solvent on the reaction performances. It was also fou...
متن کاملResponse to Comment on "Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts".
In their Comment on the our recent Report, Nakamura et al argue that our x-ray photoelectron spectroscopy (XPS) analysis was affected by the presence of formate species on the catalyst surface. This argument is not valid because the reactant gases were evacuated at temperatures from 525 to 575 kelvin, conditions under which formate is not stable on the catalyst surface. An analysis of the XPS r...
متن کاملEffect of Calcination Rate on Performance of Co-precipitated Cu-MgO Catalyst in Hydrogenation of Furfural
Co-precipitated Cu-MgO catalysts were prepared and evaluated for the gas-phase hydrogenation of furfural. The effect of heating rate at the calcination step was studied by comparing the performance of three catalysts prepared via the same procedure but calcined at different heating rates. The results established that altering the heating rate could influence the structural properties of the cat...
متن کاملPhosphinate stabilised ZnO and Cu colloidal nanocatalysts for CO2 hydrogenation to methanol.
Colloidal solutions of ZnO-Cu nanoparticles can be used as catalysts for the reduction of carbon dioxide with hydrogen. The use of phosphinate ligands for the synthesis of the nanoparticles from organometallic precursors improves the reductive stability and catalytic activity of the system.
متن کاملComment on "Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts".
Kattel et al (Reports, 24 March 2017, p. 1296) report that a zinc on copper (Zn/Cu) surface undergoes oxidation to zinc oxide/copper (ZnO/Cu) during carbon dioxide (CO2) hydrogenation to methanol and conclude that the Cu-ZnO interface is the active site for methanol synthesis. Similar experiments conducted two decades ago by Fujitani and Nakamura et al demonstrated that Zn is attached to format...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Catalysis Letters
سال: 2019
ISSN: 1011-372X,1572-879X
DOI: 10.1007/s10562-019-03036-7